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Preface

A Textbook for the  
21st Century
In the 21st century, engineering thermodynamics plays a central 
role in developing improved ways to provide and use energy, 
while mitigating the serious human health and environmental 
consequences accompanying energy—including air and water 
pollution and global climate change. Applications in bioengi-
neering, biomedical systems, and nanotechnology also continue 
to emerge. This book provides the tools needed by specialists 
working in all such felds. For non-specialists, this book pro-
vides background for making decisions about technology re-
lated to thermodynamics—on the job and as informed citizens.

Engineers in the 21st century need a solid set of analytical 
and problem-solving skills as the foundation for tackling im-
portant societal issues relating to engineering thermodynam-
ics. The ninth edition develops these skills and signifcantly 
expands our coverage of their applications to provide

•  �current context for the study of thermodynamic principles.
•  �relevant background to make the subject meaningful for 

meeting the challenges of the decades ahead.
•  �signifcant material related to existing technologies in light 

of new challenges.

In the ninth edition, we build on the core features that 
have made the text the global leader in engineering thermo-
dynamics education. We are known for our clear and concise 
explanations grounded in the fundamentals, pioneering ped-
agogy for efective learning, and relevant, up-to-date appli-
cations. Through the creativity and experience of our author 
team, and based on excellent feedback from instructors and 
students, we continue to enhance what has become the lead-
ing text in the feld.

New in the Ninth Edition
The ninth edition features a crisp new interior design aimed 
at helping students

•  �better understand and apply the subject matter, and
•  �fully appreciate the relevance of the topics to engineering 

practice and to society.

Other Core Features
This edition also provides, under the heading How to Use

This Book Efectively,  an updated roadmap to core features of this 

text that make it so efective for student learning. To fully un-
derstand all of the many features we have built into the book, 
be sure to see this important element.

In this edition, several enhancements to improve student 
learning have been introduced or upgraded:

•  �The p–h diagrams for two refrigerants: CO2 (R-744) and 
R-410A are included as Figs. A-10 and A-11, respectively, 
in the appendix. The ability to locate states on property 
diagrams is an important skill that is used selectively in 
end-of-chapter problems.

•  �Animations are ofered at key subject matter locations to 
improve student learning. When viewing the animations, 
students will develop deeper understanding by visualizing 
key processes and phenomena.

•  �Special text elements feature important illustrations of  
engineering thermodynamics applied to our environment, 
society, and world:
•  �Energy & Environment presentations explore topics re-

lated to energy resource use and environmental issues in 
engineering.

•  �BioConnections discussions tie textbook topics to contem-
porary applications in biomedicine and bioengineering.

•  �Horizons features have been included that link subject 
matter to thought-provoking 21st-century issues and 
emerging technologies.

Suggestions for additional reading and sources for topical content 
presented in these elements provided on request.

•  �End-of-chapter problems in each of the four modes: con-
ceptual, checking understanding, skill building, and 
design have been extensively revised.

•  �New and revised class-tested material contributes to stu-
dent learning and instructor efectiveness:
•  �Signifcant content explores how thermodynamics con-

tributes to meet the challenges of the 21st century.
•  �Key aspects of fundamentals and applications within the 

text have been enhanced.
•  �In response to instructor and student needs, class-tested 

changes that contribute to a more just-in-time presentation 
have been introduced:
•  �TAKE NOTE... entries in the margins are expanded 

throughout the textbook to improve student learning. For 
example, see Section 1.2.3.

•  �Boxed material allows students and instructors to explore 
topics in greater depth. For example, see Section 3.5.2.

•  �Margin terms throughout aid in navigating subject 
matter.
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•  �Skillful use of tables and property diagrams is prerequi-
site for the efective use of software to retrieve thermo-
dynamic property data. The latest version of IT provides 
data for CO2 (R-744) and R-410A using as its source 
Mini REFPROP by permission of the National Institute 
of Standards and Technology (NIST).

•  �WileyPLUS is an online set of instructional, practice, 
and course management resources. Included for students 
are the complete digital textbook with embedded links 
for question assistance, problems for Checking Under-
standing that provide immediate feedback, and Checking  
Understanding and Developing Engineering Skills 
problems for self-testing and practice. Course man-
agement resources for instructors include the ability to 
track student progress and provide feedback, automatic 
grading functions, and algorithmic functionality for the 
problems so they can be used for practice or for testing/
grading.

Visit www.wiley.com/college/moran or contact your local 
Wiley representative for information on the above-mentioned 
supplements.

Ways to Meet Diferent 
Course Needs
In recognition of the evolving nature of engineering curricula, 
and in particular of the diverse ways engineering thermody-
namics is presented, the text is structured to meet a variety 
of course needs. The following table illustrates several possi-
ble uses of the textbook assuming a semester basis (3 credits). 
Courses could be taught using this textbook to engineering 
students with appropriate background beginning in their sec-
ond year of study.

Supplements
The following supplements are available with the text:

•  �Outstanding Instructor and Student companion web sites 
(visit www.wiley.com/college/moran) that greatly en-
hance teaching and learning:
•  �Instructor Companion Site: Assists instructors in deliver-

ing an efective course with resources including
•  �a Steam Table Process Overview to assist students in 

mastering the use of the steam tables for retrieving data.
•  �animations—with just-in-time labels in the margins.
•  �a complete solution manual that is easy to navigate.
•  �solutions to computer-based problems for use with 

both IT: Interactive Thermodynamics as well as EES: 
Engineering Equation Solver.

•  �image galleries with text images available in various 
helpful electronic formats.

•  �sample syllabi on semester and quarter bases.
•  �correlation guides to ease transition between editions 

of this text and for switching to this edition from 
another book.

•  �Student Companion Site: Helps students learn the subject 
matter with resources including
•  �Steam Table Process Overview.
•  animations.
•  answers to selected problems.

•  �Interactive Thermodynamics: IT software is a highly 
valuable learning tool that allows students to develop 
engineering models, perform “what-if” analyses, and ex-
amine principles in more detail to enhance their learning. 
Brief tutorials of IT are included within the text and the 
use of IT is illustrated within selected solved examples.

Type of course Intended audience Chapter coverage

Nonmajors
• Principles. Chaps. 1–6.
• �Applications. Selected topics from Chaps. 

8–10 (omit compressible flow in Chap. 9).
Survey courses

Majors
• Principles. Chaps. 1–6.
• �Applications. Same as above plus selected 

topics from Chaps. 12 and 13.

Two-course sequences Majors

�• �First course. Chaps. 1–7. (Chap. 7 may be 
deferred to second course or omitted.)

�• �Second course. Selected topics from Chaps. 
8–14 to meet particular course needs.
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CHAPTER 1
Getting Started
Introductory Concepts  
and Definitions

Engineering Context
Although aspects of thermodynamics have been studied since ancient 
times, the formal study of thermodynamics began in the early nineteenth 
century through consideration of the capacity of hot objects to produce 
work. Today the scope is much larger. Thermodynamics now provides 
essential concepts and methods for addressing critical twenty-frst-century 
issues, such as using fossil fuels more efectively, fostering renewable 
energy technologies, and developing more fuel-efcient means of trans-
portation. Also critical are the related issues of greenhouse gas emissions 
and air and water pollution.

Thermodynamics is both a branch of science and an engineering 
specialty. The scientist is normally interested in gaining a fundamental 
understanding of the physical and chemical behavior of fxed quantities 
of matter at rest and uses the principles of thermodynamics to relate the 
properties of matter. Engineers are generally interested in studying sys-
tems and how they interact with their surroundings. To facilitate this, 
thermodynamics has been extended to the study of systems through 
which matter fows, including bioengineering and biomedical systems.

The objective of this chapter is to introduce you to some of the 
fundamental concepts and defnitions that are used in our study of en-
gineering thermodynamics. In most instances this introduction is brief, 
and further elaboration is provided in subsequent chapters.

1

LEARNING OUTCOMeS

When you complete your study of this 
chapter, you will be able to...

•  �Explain several fundamental concepts used 
throughout the book, including closed 
system, control volume, boundary and 
surroundings, property, state, process, the 
distinction between extensive and intensive 
properties, and equilibrium.

•  �Identify SI and English Engineering units, 
including units for specific volume, pressure, 
and temperature.

•  �Describe the relationship among the Kelvin, 
Rankine, Celsius, and Fahrenheit temperature 
scales.

•  �Apply appropriate unit conversion factors 
during calculations.

•  �Apply the problem-solving methodology used 
in this book.
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Medical professionals rely on measurements of pressure 
and temperature, introduced in Secs. 1.6 and 1.7. 
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1.1   Using Thermodynamics
Engineers use principles drawn from thermodynamics and other engineering sciences, includ-
ing fuid mechanics and heat and mass transfer, to analyze and design devices intended to meet 
human needs. Throughout the twentieth century, engineering applications of thermodynamics 
helped pave the way for signifcant improvements in our quality of life with advances in major 
areas such as surface transportation, air travel, space fight, electricity generation and trans-
mission, building heating and cooling, and improved medical practices. The wide realm of 
these applications is suggested by Table 1.1.

In the twenty-frst century, engineers will create the technology needed to achieve 
a sustainable future. Thermodynamics will continue to advance human well-being by 
addressing looming societal challenges owing to declining supplies of energy resources: oil, 
natural gas, coal, and fssionable material; efects of global climate change; and burgeoning 
population. Life in the United States is expected to change in several important respects by 
mid-century. In the area of power use, for example, electricity will play an even greater role 
than today. Table 1.2 provides predictions of other changes experts say will be observed.

If this vision of mid-century life is correct, it will be necessary to evolve quickly from 
our present energy posture. As was the case in the twentieth century, thermodynamics will 
contribute signifcantly to meeting the challenges of the twenty-frst century, including using 
fossil fuels more efectively, advancing renewable energy technologies, and developing more 
energy-efcient transportation systems, buildings, and industrial practices. Thermodynamics 
also will play a role in mitigating global climate change, air pollution, and water pollution. 
Applications will be observed in bioengineering, biomedical systems, and the deployment of 
nanotechnology. This book provides the tools needed by specialists working in all such felds. 
For nonspecialists, the book provides background for making decisions about technology re-
lated to thermodynamics—on the job, as informed citizens, and as government leaders and 
policy makers.

1.2   Defining Systems
The key initial step in any engineering analysis is to describe precisely what is being studied. 
In mechanics, if the motion of a body is to be determined, normally the frst step is to defne 
a free body and identify all the forces exerted on it by other bodies. Newton’s second law of 
motion is then applied. In thermodynamics the term system is used to identify the subject of 
the analysis. Once the system is defned and the relevant interactions with other systems are 
identifed, one or more physical laws or relations are applied.

The system is whatever we want to study. It may be as simple as a free body or as complex 
as an entire chemical refnery. We may want to study a quantity of matter contained within a 
closed, rigid-walled tank, or we may want to consider something such as a pipeline through 
which natural gas fows. The composition of the matter inside the system may be fxed or may 
be changing through chemical or nuclear reactions. The shape or volume of the system being 
analyzed is not necessarily constant, as when a gas in a cylinder is compressed by a piston or 
a balloon is infated.

Everything external to the system is considered to be part of the system’s surroundings. 
The system is distinguished from its surroundings by a specifed boundary, which 
may be at rest or in motion. You will see that the interactions between a system and its 
surroundings, which take place across the boundary, play an important part in engineering 
thermodynamics.

Two basic kinds of systems are distinguished in this book. These are referred to, respec-
tively, as closed systems and control volumes. A closed system refers to a fxed quantity of 
matter, whereas a control volume is a region of space through which mass may fow. The term 
control mass is sometimes used in place of closed system, and the term open system is used 
interchangeably with control volume. When the terms control mass and control volume are 
used, the system boundary is often referred to as a control surface.

system

surroundings
boundary
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TABLE 1.1   Selected Areas of Application of Engineering Thermodynamics

Aircraf and rocket propulsion
Alternative energy systems
  Fuel cells
  Geothermal systems
  Magnetohydrodynamic (MHD) converters
  Ocean thermal, wave, and tidal power generation
  Solar-activated heating, cooling, and power generation
 T hermoelectric and thermionic devices
  Wind turbines
Automobile engines
Bioengineering applications
Biomedical applications
Combustion systems
Compressors, pumps
Cooling of electronic equipment
Cryogenic systems, gas separation, and liquefaction
Fossil and nuclear-fueled power stations
Heating, ventilating, and air-conditioning systems
  Absorption refrigeration and heat pumps
  Vapor-compression refrigeration and heat pumps
Steam and gas turbines
 P ower production
 P ropulsion
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1.2.1   Closed Systems
A closed system is defned when a particular quantity of matter is under study. A closed sys-
tem always contains the same matter. There can be no transfer of mass across its boundary. A 
special type of closed system that does not interact in any way with its surroundings is called 
an isolated system.

Figure 1.1 shows a gas in a piston–cylinder assembly. When the valves are closed, we can 
consider the gas to be a closed system. The boundary lies just inside the piston and cylinder 
walls, as shown by the dashed lines on the fgure. Since the portion of the boundary between 
the gas and the piston moves with the piston, the system volume varies. No mass would cross 
this or any other part of the boundary. If combustion occurs, the composition of the system 
changes as the initial combustible mixture becomes products of combustion.

1.2.2   Control Volumes
In subsequent sections of this book, we perform thermodynamic analyses of devices such as 
turbines and pumps through which mass fows. These analyses can be conducted in principle 
by studying a particular quantity of matter, a closed system, as it passes through the device. 
In most cases it is simpler to think instead in terms of a given region of space through which 
mass fows. With this approach, a region within a prescribed boundary is studied. The region 
is called a control volume. Mass crosses the boundary of a control volume.

A diagram of an engine is shown in Fig. 1.2a. The dashed line defnes a control volume 
that surrounds the engine. Observe that air, fuel, and exhaust gases cross the boundary. A 
schematic such as in Fig. 1.2b often sufces for engineering analysis. Control volume applica-
tions in biology and botany are illustrated is Figs. 1.3 and 1.4 respectively.

closed system

isolated system

control volume

TABLE 1.2   Predictions of Life in the United States in 2050

At home
•  �Homes are constructed better to reduce heating and cooling needs.
•  �Homes have systems for electronically monitoring and regulating energy use.
•  �Appliances and heating and air-conditioning systems are more energy-efficient.
•  �Use of solar energy for space and water heating is common.
•  �More food is produced locally.

Transportation
•  �Plug-in hybrid vehicles and all-electric vehicles dominate.
•  �One-quarter of transport fuel is biofuels.
•  �Use of public transportation within and between cities is common.
•  �An expanded passenger railway system is widely used.

Lifestyle
•  �Efficient energy-use practices are utilized throughout society.
•  �Recycling is widely practiced, including recycling of water.
•  �Distance learning is common at most educational levels.
•  �Telecommuting and teleconferencing are the norm.
•  �The Internet is predominately used for consumer and business commerce.

Power generation
•  �Electricity plays a greater role throughout society.
•  �Wind, solar, and other renewable technologies contribute a significant share of the nation’s 

electricity needs.
•  �A mix of conventional fossil-fueled and nuclear power plants provides a smaller, but still 

significant, share of the nation’s electricity needs.
•  �A smart and secure national power transmission grid is in place.

BoundaryGas

FiG. 1.1   Closed system: A gas 
in a piston–cylinder assembly.
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1.2.3   Selecting the System Boundary
The system boundary should be delineated carefully before proceeding with any thermody-
namic analysis. However, the same physical phenomena often can be analyzed in terms of 
alternative choices of the system, boundary, and surroundings. The choice of a particular 
boundary defning a particular system depends heavily on the convenience it allows in the 
subsequent analysis.

In general, the choice of system boundary is governed by two considerations: (1) what 
is known about a possible system, particularly at its boundaries, and (2) the objective of the 
analysis. 

For Example
Figure 1.5 shows a sketch of an air compressor connected to a storage tank. The system 
boundary shown on the fgure encloses the compressor, tank, and all of the piping. This 
boundary might be selected if the electrical power input is known, and the objective of 
the analysis is to determine how long the compressor must operate for the pressure in the 
tank to rise to a specifed value. Since mass crosses the boundary, the system would be a 
control volume. A control volume enclosing only the compressor might be chosen if the 
condition of the air entering and exiting the compressor is known, and the objective is to 
determine the electric power input.

Driveshaft

(b)

Exhaust
gas out

Fuel in

Air in

Boundary (control surface)
Boundary (control surface)

Driveshaft

Exhaust
gas out

Fuel in
Air in

(a)

FiG. 1.2   Example of a control volume (open system). An automobile engine.

Air

Air

Gut

Excretion
(undigested food)

Excretion
(waste products)

Excretion
(urine)

Ingestion
(food, drink)

Ingestion
(food, drink)

CO2, other gases

CO2 O2

CO2, other gases

Heart

Kidneys

Boundary
(control
surface)

Circulatory system

Lungs

Body
tissues

(a) (b)

FiG. 1.3   Example of a control volume (open system) in biology.

Boundary
(control surface)

Photosynthesis
(leaf)

H2O, minerals

O2

CO2

Solar
radiation

FiG. 1.4   Example of a control volume (open 
system) in botany.
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TAKE NOTE...
Animations reinforce many of the text presentations. You can view these animations by 
going to the e-book, WileyPLUS course, or student companion site for this book.

Animations are keyed to specifc content by an adjacent icon.
The frst of these icons appears here. In this example, the animation name “System 

Types” refers to the animation content while “Tabs a, b, and c” refers to the tabs of the 
animation recommended for viewing now to enhance your understanding.

1.3   Describing Systems and Their Behavior
Engineers are interested in studying systems and how they interact with their surroundings. In 
this section, we introduce several terms and concepts used to describe systems and how they 
behave.

1.3.1   Macroscopic and Microscopic Views  
of Thermodynamics
Systems can be studied from a macroscopic or a microscopic point of view. The macro-
scopic approach to thermodynamics is concerned with the gross or overall behavior. This 
is sometimes called classical thermodynamics. No model of the structure of matter at the 
molecular, atomic, and subatomic levels is directly used in classical thermodynamics. 
Although the behavior of systems is afected by molecular structure, classical thermody-
namics allows important aspects of system behavior to be evaluated from observations of 
the overall system.

The microscopic approach to thermodynamics, known as statistical thermodynamics, is 
concerned directly with the structure of matter. The objective of statistical thermodynamics is 
to characterize by statistical means the average behavior of the particles making up a system 
of interest and relate this information to the observed macroscopic behavior of the system. 
For applications involving lasers, plasmas, high-speed gas fows, chemical kinetics, very low 
temperatures (cryogenics), and others, the methods of statistical thermodynamics are essen-
tial. The microscopic approach is used in this text to interpret internal energy in Chap. 2 and 
entropy in Chap 6. Moreover, as noted in Chap. 3, the microscopic approach is instrumental in 
developing certain data, for example ideal gas specific heats.

For a wide range of engineering applications, classical thermodynamics not only pro-
vides a considerably more direct approach for analysis and design but also requires far fewer 
mathematical complications. For these reasons the macroscopic viewpoint is the one adopted 
in this book. Finally, relativity efects are not signifcant for the systems under consideration 
in this book.

System Types Tabs a,  
b, and c

Animation

Air

Air compressor
Tank

+–
FiG. 1.5   Air compressor and 

storage tank.
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1.3.2  P roperty, State, and Process
To describe a system and predict its behavior requires knowledge of its properties and how 
those properties are related. A property is a macroscopic characteristic of a system such as 
mass, volume, energy, pressure, and temperature to which a numerical value can be assigned 
at a given time without knowledge of the previous behavior (history) of the system.

The word state refers to the condition of a system as described by its properties. Since 
there are normally relations among the properties of a system, the state often can be specifed 
by providing the values of a subset of the properties. All other properties can be determined 
in terms of these few.

When any of the properties of a system changes, the state changes and the system is said 
to undergo a process. A process is a transformation from one state to another. If a system 
exhibits the same values of its properties at two diferent times, it is in the same state at these 
times. A system is said to be at steady state if none of its properties changes with time.

Many properties are considered during the course of our study of engineering thermo-
dynamics. Thermodynamics also deals with quantities that are not properties, such as mass 
fow rates and energy transfers by work and heat. Additional examples of quantities that are 
not properties are provided in subsequent chapters. For a way to distinguish properties from 
nonproperties, see the following box.

property

state

process

steady state

Property, State and 
Process Tab a

Animation

Distinguishing Properties from Nonproperties
At a given state, each property has a defnite value that can be assigned 
without knowledge of how the system arrived at that state. The 
change in value of a property as the system is altered from one state 
to another is determined, therefore, solely by the two end states and 
is independent of the particular way the change of state occurred. 
The change is independent of the details of the process. Conversely, 

if the value of a quantity is independent of the process between two 
states, then that quantity is the change in a property. This provides a 
test for determining whether a quantity is a property: A quantity is 
a property if, and only if, its change in value between two states is 
independent of the process. It follows that if the value of a particu-
lar quantity depends on the details of the process, and not solely on 
the end states, that quantity cannot be a property.

1.3.3   Extensive and Intensive Properties
Thermodynamic properties can be placed in two general classes: extensive and intensive. A 
property is called extensive if its value for an overall system is the sum of its values for the 
parts into which the system is divided. Mass, volume, energy, and several other properties 
introduced later are extensive. Extensive properties depend on the size or extent of a system. 
The extensive properties of a system can change with time, and many thermodynamic anal-
yses consist mainly of carefully accounting for changes in extensive properties such as mass 
and energy as a system interacts with its surroundings.

Intensive properties are not additive in the sense previously considered. Their values are 
independent of the size or extent of a system and may vary from place to place within the sys-
tem at any moment. Intensive properties may be functions of both position and time, whereas 
extensive properties can vary only with time. Specifc volume (Sec. 1.5), pressure, and tem-
perature are important intensive properties; several other intensive properties are introduced 
in subsequent chapters.

For Example
To illustrate the diference between extensive and intensive properties, consider an 
amount of matter that is uniform in temperature, and imagine that it is composed of 
several parts, as illustrated in Fig. 1.6. The mass of the whole is the sum of the masses 
of the parts, and the overall volume is the sum of the volumes of the parts. However, the 
temperature of the whole is not the sum of the temperatures of the parts; it is the same 
for each part. Mass and volume are extensive, but temperature is intensive.
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1.3.4   Equilibrium
Classical thermodynamics places primary emphasis on equilibrium states and changes 
from one equilibrium state to another. Thus, the concept of equilibrium is fundamental. In 
mechanics, equilibrium means a condition of balance maintained by an equality of opposing 
forces. In thermodynamics, the concept is more far-reaching, including not only a balance 
of forces but also a balance of other infuences. Each kind of infuence refers to a particular 
aspect of thermodynamic, or complete, equilibrium. Accordingly, several types of equilib-
rium must exist individually to fulfll the condition of complete equilibrium; among these are 
mechanical, thermal, phase, and chemical equilibrium.

Criteria for these four types of equilibrium are considered in subsequent discussions. For 
the present, we may think of testing to see if a system is in thermodynamic equilibrium by 
the following procedure: Isolate the system from its surroundings and watch for changes in its 
observable properties. If there are no changes, we conclude that the system was in equilibrium 
at the moment it was isolated. The system can be said to be at an equilibrium state.

When a system is isolated, it does not interact with its surroundings; however, its state 
can change as a consequence of spontaneous events occurring internally as its intensive prop-
erties, such as temperature and pressure, tend toward uniform values. When all such changes 
cease, the system is in equilibrium. At equilibrium, temperature is uniform throughout the 
system. Also, pressure can be regarded as uniform throughout as long as the efect of gravity 
is not signifcant; otherwise, a pressure variation can exist, as in a vertical column of liquid.

It is not necessary that a system undergoing a process be in equilibrium during the 
process. Some or all of the intervening states may be nonequilibrium states. For many such 
processes, we are limited to knowing the state before the process occurs and the state after the 
process is completed.

1.4   Measuring Mass, Length,  
Time, and Force
When engineering calculations are performed, it is necessary to be concerned with the units 
of the physical quantities involved. A unit is any specifed amount of a quantity by comparison 
with which any other quantity of the same kind is measured. For example, meters, centime-
ters, kilometers, feet, inches, and miles are all units of length. Seconds, minutes, and hours are 
alternative time units.

Because physical quantities are related by defnitions and laws, a relatively small number 
of physical quantities sufce to conceive of and measure all others. These are called primary di-
mensions. The others are measured in terms of the primary dimensions and are called secondary. 
For example, if length and time were regarded as primary, velocity and area would be secondary.

A set of primary dimensions that sufce for applications in mechanics is mass, length, 
and time. Additional primary dimensions are required when additional physical phenomena 
come under consideration. Temperature is included for thermodynamics, and electric current 
is introduced for applications involving electricity.

Once a set of primary dimensions is adopted, a base unit for each primary dimension is 
specifed. Units for all other quantities are then derived in terms of the base units. Let us illustrate 
these ideas by considering briefy two systems of units: SI units and English Engineering units.
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FiG. 1.6   Figure used to discuss 
the extensive and intensive  
property concepts.
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1.4.1   SI Units
In the present discussion we consider the SI system of units that takes mass, length, and time 
as primary dimensions and regards force as secondary. SI is the abbreviation for Système 
International d’Unités (International System of Units), which is the legally accepted system 
in most countries. The conventions of the SI are published and controlled by an international 
treaty organization. The SI base units for mass, length, and time are listed in Table 1.3 and 
discussed in the following paragraphs. The SI base unit for temperature is the kelvin, K.

The SI base unit of mass is the kilogram, kg. It is equal to the mass of a particular cyl-
inder of platinum–iridium alloy kept by the International Bureau of Weights and Measures 
near Paris. The mass standard for the United States is maintained by the National Institute of 
Standards and Technology (NIST). The kilogram is the only base unit still defned relative to 
a fabricated object.

The SI base unit of length is the meter (metre), m, defned as the length of the path traveled 
by light in a vacuum during a specifed time interval. The base unit of time is the second, s.  
The second is defned as the duration of 9,192,631,770 cycles of the radiation associated with 
a specifed transition of the cesium atom.

The SI unit of force, called the newton, is a secondary unit, defned in terms of the base 
units for mass, length, and time. Newton’s second law of motion states that the net force acting 
on a body is proportional to the product of the mass and the acceleration, written F ∝ ma. The 
newton is defned so that the proportionality constant in the expression is equal to unity. That 
is, Newton’s second law is expressed as the equality

	 F ma= � (1.1)

The newton, N, is the force required to accelerate a mass of 1 kilogram at the rate of 1 meter 
per second per second. With Eq. 1.1 

	 1 N (1 kg)(1 m/s ) 1 kg m/s2 2⋅⋅= = � (1.2)

For Example
To illustrate the use of the SI units introduced thus far, let us determine the weight in 
newtons of an object whose mass is 1000 kg, at a place on Earth’s surface where the ac-
celeration due to gravity equals a standard value defned as 9.80665 m/s2. Recalling that 
the weight of an object refers to the force of gravity and is calculated using the mass of the 
object, m, and the local acceleration of gravity, g, with Eq. 1.1 we get

F mg
(1000 kg)(9.80665 m/s ) 9806.65 kg m/s2 2⋅⋅

=
= =

This force can be expressed in terms of the newton by using Eq. 1.2 as a unit conversion 
factor. That is,

F 9806.65 kg m
s

1 N
1 kg m/s

9806.65 N
2 2

⋅⋅
⋅⋅

=








 =

SI base units

TABLE 1.3   Units for Mass, Length, Time, and Force

SI English

Quantity Unit Symbol Unit Symbol

mass kilogram kg pound mass lb

length meter m foot f

time second s second s

force newton N pound force lbf

(= 1 kg ⋅⋅ m/s2) (= 32.1740 lb ⋅⋅ f/s2)




